Package: bmem 2.1
bmem: Mediation Analysis with Missing Data Using Bootstrap
Four methods for mediation analysis with missing data: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included. Bootstrap confidence intervals for mediation effects are obtained. The robust method is also implemented for TS-ML. Since version 1.4, bmem adds the capability to conduct power analysis for mediation models. Details about the methods used can be found in these articles. Zhang and Wang (2003) <doi:10.1007/s11336-012-9301-5>. Zhang (2014) <doi:10.3758/s13428-013-0424-0>.
Authors:
bmem_2.1.tar.gz
bmem_2.1.zip(r-4.5)bmem_2.1.zip(r-4.4)bmem_2.1.zip(r-4.3)
bmem_2.1.tgz(r-4.4-any)bmem_2.1.tgz(r-4.3-any)
bmem_2.1.tar.gz(r-4.5-noble)bmem_2.1.tar.gz(r-4.4-noble)
bmem_2.1.tgz(r-4.4-emscripten)bmem_2.1.tgz(r-4.3-emscripten)
bmem.pdf |bmem.html✨
bmem/json (API)
# Install 'bmem' in R: |
install.packages('bmem', repos = c('https://johnnyzhz.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:68e825c047. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | NOTE | Nov 08 2024 |
R-4.5-linux | NOTE | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 09 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:bmembmem.bsbmem.ci.bcbmem.ci.bc1bmem.ci.bcabmem.ci.bca1bmem.ci.normbmem.ci.pbmem.covbmem.embmem.em.bootbmem.em.covbmem.em.jackbmem.em.rcovbmem.listbmem.list.bootbmem.list.covbmem.list.jackbmem.mibmem.mi.bootbmem.mi.covbmem.mi.jackbmem.momentsbmem.pairbmem.pair.bootbmem.pair.covbmem.pair.jackbmem.patternbmem.plotbmem.raw2covbmem.sembmem.sobelbmem.sobel.indbmem.ssqbmem.vplot.bmempopParpower.basicpower.bootpower.curvesummary.bmem
Dependencies:abindAmeliaarmbootcodaforeignlatticelavaanlme4MASSMatrixmiminqamnormtnlmenloptrnumDerivpbivnormquadprogRcppRcppArmadilloRcppEigenrlangsemsnowsnowfall